\(\int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\) [386]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 360 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {2 \left (a^2 A-A b^2-2 a b B\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 \left (2 a A b+a^2 B-b^2 B\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b (7 A b+9 a B) \tan ^{\frac {5}{2}}(c+d x)}{35 d}+\frac {2 b B \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d} \]

[Out]

-1/2*(2*a*b*(A-B)+a^2*(A+B)-b^2*(A+B))*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1/2*(2*a*b*(A-B)+a^2*(A+B
)-b^2*(A+B))*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)+1/4*(a^2*(A-B)-b^2*(A-B)-2*a*b*(A+B))*ln(1-2^(1/2)*t
an(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1/2)-1/4*(a^2*(A-B)-b^2*(A-B)-2*a*b*(A+B))*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(
d*x+c))/d*2^(1/2)+2*(A*a^2-A*b^2-2*B*a*b)*tan(d*x+c)^(1/2)/d+2/3*(2*A*a*b+B*a^2-B*b^2)*tan(d*x+c)^(3/2)/d+2/35
*b*(7*A*b+9*B*a)*tan(d*x+c)^(5/2)/d+2/7*b*B*tan(d*x+c)^(5/2)*(a+b*tan(d*x+c))/d

Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 360, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.303, Rules used = {3688, 3711, 3609, 3615, 1182, 1176, 631, 210, 1179, 642} \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\frac {\left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (a^2 (A+B)+2 a b (A-B)-b^2 (A+B)\right ) \arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} d}+\frac {2 \left (a^2 B+2 a A b-b^2 B\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 \left (a^2 A-2 a b B-A b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {\left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}-\frac {\left (a^2 (A-B)-2 a b (A+B)-b^2 (A-B)\right ) \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {2 b (9 a B+7 A b) \tan ^{\frac {5}{2}}(c+d x)}{35 d}+\frac {2 b B \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d} \]

[In]

Int[Tan[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

((2*a*b*(A - B) + a^2*(A + B) - b^2*(A + B))*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) - ((2*a*b*(A
- B) + a^2*(A + B) - b^2*(A + B))*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) + ((a^2*(A - B) - b^2*(A
 - B) - 2*a*b*(A + B))*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) - ((a^2*(A - B) - b^2
*(A - B) - 2*a*b*(A + B))*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) + (2*(a^2*A - A*b^
2 - 2*a*b*B)*Sqrt[Tan[c + d*x]])/d + (2*(2*a*A*b + a^2*B - b^2*B)*Tan[c + d*x]^(3/2))/(3*d) + (2*b*(7*A*b + 9*
a*B)*Tan[c + d*x]^(5/2))/(35*d) + (2*b*B*Tan[c + d*x]^(5/2)*(a + b*Tan[c + d*x]))/(7*d)

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3609

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*
((a + b*Tan[e + f*x])^m/(f*m)), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3688

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f
*(m + n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[a^2*A*d*(m +
 n) - b*B*(b*c*(m - 1) + a*d*(n + 1)) + d*(m + n)*(2*a*A*b + B*(a^2 - b^2))*Tan[e + f*x] - (b*B*(b*c - a*d)*(m
 - 1) - b*(A*b + a*B)*d*(m + n))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&
 !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3711

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b B \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}+\frac {2}{7} \int \tan ^{\frac {3}{2}}(c+d x) \left (\frac {1}{2} a (7 a A-5 b B)+\frac {7}{2} \left (2 a A b+a^2 B-b^2 B\right ) \tan (c+d x)+\frac {1}{2} b (7 A b+9 a B) \tan ^2(c+d x)\right ) \, dx \\ & = \frac {2 b (7 A b+9 a B) \tan ^{\frac {5}{2}}(c+d x)}{35 d}+\frac {2 b B \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}+\frac {2}{7} \int \tan ^{\frac {3}{2}}(c+d x) \left (\frac {7}{2} \left (a^2 A-A b^2-2 a b B\right )+\frac {7}{2} \left (2 a A b+a^2 B-b^2 B\right ) \tan (c+d x)\right ) \, dx \\ & = \frac {2 \left (2 a A b+a^2 B-b^2 B\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b (7 A b+9 a B) \tan ^{\frac {5}{2}}(c+d x)}{35 d}+\frac {2 b B \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}+\frac {2}{7} \int \sqrt {\tan (c+d x)} \left (-\frac {7}{2} \left (2 a A b+a^2 B-b^2 B\right )+\frac {7}{2} \left (a^2 A-A b^2-2 a b B\right ) \tan (c+d x)\right ) \, dx \\ & = \frac {2 \left (a^2 A-A b^2-2 a b B\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 \left (2 a A b+a^2 B-b^2 B\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b (7 A b+9 a B) \tan ^{\frac {5}{2}}(c+d x)}{35 d}+\frac {2 b B \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}+\frac {2}{7} \int \frac {-\frac {7}{2} \left (a^2 A-A b^2-2 a b B\right )-\frac {7}{2} \left (2 a A b+a^2 B-b^2 B\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx \\ & = \frac {2 \left (a^2 A-A b^2-2 a b B\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 \left (2 a A b+a^2 B-b^2 B\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b (7 A b+9 a B) \tan ^{\frac {5}{2}}(c+d x)}{35 d}+\frac {2 b B \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}+\frac {4 \text {Subst}\left (\int \frac {-\frac {7}{2} \left (a^2 A-A b^2-2 a b B\right )-\frac {7}{2} \left (2 a A b+a^2 B-b^2 B\right ) x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{7 d} \\ & = \frac {2 \left (a^2 A-A b^2-2 a b B\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 \left (2 a A b+a^2 B-b^2 B\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b (7 A b+9 a B) \tan ^{\frac {5}{2}}(c+d x)}{35 d}+\frac {2 b B \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}-\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d} \\ & = \frac {2 \left (a^2 A-A b^2-2 a b B\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 \left (2 a A b+a^2 B-b^2 B\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b (7 A b+9 a B) \tan ^{\frac {5}{2}}(c+d x)}{35 d}+\frac {2 b B \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}+\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} d}+\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 d} \\ & = \frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {2 \left (a^2 A-A b^2-2 a b B\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 \left (2 a A b+a^2 B-b^2 B\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b (7 A b+9 a B) \tan ^{\frac {5}{2}}(c+d x)}{35 d}+\frac {2 b B \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d} \\ & = \frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {\left (2 a b (A-B)+a^2 (A+B)-b^2 (A+B)\right ) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {\left (a^2 (A-B)-b^2 (A-B)-2 a b (A+B)\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {2 \left (a^2 A-A b^2-2 a b B\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 \left (2 a A b+a^2 B-b^2 B\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b (7 A b+9 a B) \tan ^{\frac {5}{2}}(c+d x)}{35 d}+\frac {2 b B \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))}{7 d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.37 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.49 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\frac {105 \sqrt [4]{-1} (a-i b)^2 (A-i B) \arctan \left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+105 \sqrt [4]{-1} (a+i b)^2 (A+i B) \text {arctanh}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+2 \sqrt {\tan (c+d x)} \left (105 \left (a^2 A-A b^2-2 a b B\right )+35 \left (2 a A b+a^2 B-b^2 B\right ) \tan (c+d x)+21 b (A b+2 a B) \tan ^2(c+d x)+15 b^2 B \tan ^3(c+d x)\right )}{105 d} \]

[In]

Integrate[Tan[c + d*x]^(3/2)*(a + b*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(105*(-1)^(1/4)*(a - I*b)^2*(A - I*B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] + 105*(-1)^(1/4)*(a + I*b)^2*(A +
I*B)*ArcTanh[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] + 2*Sqrt[Tan[c + d*x]]*(105*(a^2*A - A*b^2 - 2*a*b*B) + 35*(2*a*A*
b + a^2*B - b^2*B)*Tan[c + d*x] + 21*b*(A*b + 2*a*B)*Tan[c + d*x]^2 + 15*b^2*B*Tan[c + d*x]^3))/(105*d)

Maple [A] (verified)

Time = 0.03 (sec) , antiderivative size = 333, normalized size of antiderivative = 0.92

method result size
derivativedivides \(\frac {\frac {2 B \,b^{2} \left (\tan ^{\frac {7}{2}}\left (d x +c \right )\right )}{7}+\frac {2 A \,b^{2} \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right )}{5}+\frac {4 B a b \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right )}{5}+\frac {4 A a b \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3}+\frac {2 B \,a^{2} \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3}-\frac {2 B \,b^{2} \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3}+2 A \,a^{2} \left (\sqrt {\tan }\left (d x +c \right )\right )-2 \left (\sqrt {\tan }\left (d x +c \right )\right ) A \,b^{2}-4 \left (\sqrt {\tan }\left (d x +c \right )\right ) B a b +\frac {\left (-A \,a^{2}+A \,b^{2}+2 B a b \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {\left (-2 A a b -B \,a^{2}+B \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}}{d}\) \(333\)
default \(\frac {\frac {2 B \,b^{2} \left (\tan ^{\frac {7}{2}}\left (d x +c \right )\right )}{7}+\frac {2 A \,b^{2} \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right )}{5}+\frac {4 B a b \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right )}{5}+\frac {4 A a b \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3}+\frac {2 B \,a^{2} \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3}-\frac {2 B \,b^{2} \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3}+2 A \,a^{2} \left (\sqrt {\tan }\left (d x +c \right )\right )-2 \left (\sqrt {\tan }\left (d x +c \right )\right ) A \,b^{2}-4 \left (\sqrt {\tan }\left (d x +c \right )\right ) B a b +\frac {\left (-A \,a^{2}+A \,b^{2}+2 B a b \right ) \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {\left (-2 A a b -B \,a^{2}+B \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}}{d}\) \(333\)
parts \(\frac {\left (A \,b^{2}+2 B a b \right ) \left (\frac {2 \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right )}{5}-2 \left (\sqrt {\tan }\left (d x +c \right )\right )+\frac {\sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}+\frac {\left (2 A a b +B \,a^{2}\right ) \left (\frac {2 \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3}-\frac {\sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}+\frac {A \,a^{2} \left (2 \left (\sqrt {\tan }\left (d x +c \right )\right )-\frac {\sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}+\frac {B \,b^{2} \left (\frac {2 \left (\tan ^{\frac {7}{2}}\left (d x +c \right )\right )}{7}-\frac {2 \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{3}+\frac {\sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}\) \(452\)

[In]

int(tan(d*x+c)^(3/2)*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(2/7*B*b^2*tan(d*x+c)^(7/2)+2/5*A*b^2*tan(d*x+c)^(5/2)+4/5*B*a*b*tan(d*x+c)^(5/2)+4/3*A*a*b*tan(d*x+c)^(3/
2)+2/3*B*a^2*tan(d*x+c)^(3/2)-2/3*B*b^2*tan(d*x+c)^(3/2)+2*A*a^2*tan(d*x+c)^(1/2)-2*tan(d*x+c)^(1/2)*A*b^2-4*t
an(d*x+c)^(1/2)*B*a*b+1/4*(-A*a^2+A*b^2+2*B*a*b)*2^(1/2)*(ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2
)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/
4*(-2*A*a*b-B*a^2+B*b^2)*2^(1/2)*(ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d
*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4326 vs. \(2 (318) = 636\).

Time = 0.71 (sec) , antiderivative size = 4326, normalized size of antiderivative = 12.02 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\text {Too large to display} \]

[In]

integrate(tan(d*x+c)^(3/2)*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/210*(105*d*sqrt(-(2*A*B*a^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 - B^2)*a*b^3 + d^2*s
qrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A
^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 2
2*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/d^2)*log(((B*a^2 +
2*A*a*b - B*b^2)*d^3*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3
*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*
a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4
) + ((A^3 - A*B^2)*a^6 - 2*(5*A^2*B - B^3)*a^5*b - (7*A^3 - 23*A*B^2)*a^4*b^2 + 4*(7*A^2*B - 3*B^3)*a^3*b^3 +
(7*A^3 - 23*A*B^2)*a^2*b^4 - 2*(5*A^2*B - B^3)*a*b^5 - (A^3 - A*B^2)*b^6)*d)*sqrt(-(2*A*B*a^4 - 12*A*B*a^2*b^2
 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 - B^2)*a*b^3 + d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B
- A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^
2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3
)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/d^2) - ((A^4 - B^4)*a^8 - 8*(A^3*B + A*B^3)*a^7*b - 4*(A^4 - B^4)
*a^6*b^2 - 8*(A^3*B + A*B^3)*a^5*b^3 - 10*(A^4 - B^4)*a^4*b^4 + 8*(A^3*B + A*B^3)*a^3*b^5 - 4*(A^4 - B^4)*a^2*
b^6 + 8*(A^3*B + A*B^3)*a*b^7 + (A^4 - B^4)*b^8)*sqrt(tan(d*x + c))) - 105*d*sqrt(-(2*A*B*a^4 - 12*A*B*a^2*b^2
 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 - B^2)*a*b^3 + d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B
- A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^
2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3
)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/d^2)*log(-((B*a^2 + 2*A*a*b - B*b^2)*d^3*sqrt(-((A^4 - 2*A^2*B^2
+ B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 +
 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*
b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4) + ((A^3 - A*B^2)*a^6 - 2*(5*A^2*B - B^3)*a^
5*b - (7*A^3 - 23*A*B^2)*a^4*b^2 + 4*(7*A^2*B - 3*B^3)*a^3*b^3 + (7*A^3 - 23*A*B^2)*a^2*b^4 - 2*(5*A^2*B - B^3
)*a*b^5 - (A^3 - A*B^2)*b^6)*d)*sqrt(-(2*A*B*a^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 -
 B^2)*a*b^3 + d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^
4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3
*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/
d^2) - ((A^4 - B^4)*a^8 - 8*(A^3*B + A*B^3)*a^7*b - 4*(A^4 - B^4)*a^6*b^2 - 8*(A^3*B + A*B^3)*a^5*b^3 - 10*(A^
4 - B^4)*a^4*b^4 + 8*(A^3*B + A*B^3)*a^3*b^5 - 4*(A^4 - B^4)*a^2*b^6 + 8*(A^3*B + A*B^3)*a*b^7 + (A^4 - B^4)*b
^8)*sqrt(tan(d*x + c))) - 105*d*sqrt(-(2*A*B*a^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 -
 B^2)*a*b^3 - d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^
4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3
*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/
d^2)*log(((B*a^2 + 2*A*a*b - B*b^2)*d^3*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A
^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 1
12*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*
B^2 + B^4)*b^8)/d^4) - ((A^3 - A*B^2)*a^6 - 2*(5*A^2*B - B^3)*a^5*b - (7*A^3 - 23*A*B^2)*a^4*b^2 + 4*(7*A^2*B
- 3*B^3)*a^3*b^3 + (7*A^3 - 23*A*B^2)*a^2*b^4 - 2*(5*A^2*B - B^3)*a*b^5 - (A^3 - A*B^2)*b^6)*d)*sqrt(-(2*A*B*a
^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 - B^2)*a*b^3 - d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^
4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(
19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6
+ 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/d^2) - ((A^4 - B^4)*a^8 - 8*(A^3*B + A*B^3)*a^
7*b - 4*(A^4 - B^4)*a^6*b^2 - 8*(A^3*B + A*B^3)*a^5*b^3 - 10*(A^4 - B^4)*a^4*b^4 + 8*(A^3*B + A*B^3)*a^3*b^5 -
 4*(A^4 - B^4)*a^2*b^6 + 8*(A^3*B + A*B^3)*a*b^7 + (A^4 - B^4)*b^8)*sqrt(tan(d*x + c))) + 105*d*sqrt(-(2*A*B*a
^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^2)*a^3*b - 4*(A^2 - B^2)*a*b^3 - d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^
4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(
19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6
+ 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4))/d^2)*log(-((B*a^2 + 2*A*a*b - B*b^2)*d^3*sqrt(
-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B
 - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^
2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2 + B^4)*b^8)/d^4) - ((A^3 - A*B^2)*a^6 - 2
*(5*A^2*B - B^3)*a^5*b - (7*A^3 - 23*A*B^2)*a^4*b^2 + 4*(7*A^2*B - 3*B^3)*a^3*b^3 + (7*A^3 - 23*A*B^2)*a^2*b^4
 - 2*(5*A^2*B - B^3)*a*b^5 - (A^3 - A*B^2)*b^6)*d)*sqrt(-(2*A*B*a^4 - 12*A*B*a^2*b^2 + 2*A*B*b^4 + 4*(A^2 - B^
2)*a^3*b - 4*(A^2 - B^2)*a*b^3 - d^2*sqrt(-((A^4 - 2*A^2*B^2 + B^4)*a^8 - 16*(A^3*B - A*B^3)*a^7*b - 4*(3*A^4
- 22*A^2*B^2 + 3*B^4)*a^6*b^2 + 112*(A^3*B - A*B^3)*a^5*b^3 + 2*(19*A^4 - 102*A^2*B^2 + 19*B^4)*a^4*b^4 - 112*
(A^3*B - A*B^3)*a^3*b^5 - 4*(3*A^4 - 22*A^2*B^2 + 3*B^4)*a^2*b^6 + 16*(A^3*B - A*B^3)*a*b^7 + (A^4 - 2*A^2*B^2
 + B^4)*b^8)/d^4))/d^2) - ((A^4 - B^4)*a^8 - 8*(A^3*B + A*B^3)*a^7*b - 4*(A^4 - B^4)*a^6*b^2 - 8*(A^3*B + A*B^
3)*a^5*b^3 - 10*(A^4 - B^4)*a^4*b^4 + 8*(A^3*B + A*B^3)*a^3*b^5 - 4*(A^4 - B^4)*a^2*b^6 + 8*(A^3*B + A*B^3)*a*
b^7 + (A^4 - B^4)*b^8)*sqrt(tan(d*x + c))) + 4*(15*B*b^2*tan(d*x + c)^3 + 105*A*a^2 - 210*B*a*b - 105*A*b^2 +
21*(2*B*a*b + A*b^2)*tan(d*x + c)^2 + 35*(B*a^2 + 2*A*a*b - B*b^2)*tan(d*x + c))*sqrt(tan(d*x + c)))/d

Sympy [F]

\[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\int \left (A + B \tan {\left (c + d x \right )}\right ) \left (a + b \tan {\left (c + d x \right )}\right )^{2} \tan ^{\frac {3}{2}}{\left (c + d x \right )}\, dx \]

[In]

integrate(tan(d*x+c)**(3/2)*(a+b*tan(d*x+c))**2*(A+B*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*(a + b*tan(c + d*x))**2*tan(c + d*x)**(3/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.71 (sec) , antiderivative size = 302, normalized size of antiderivative = 0.84 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\frac {120 \, B b^{2} \tan \left (d x + c\right )^{\frac {7}{2}} + 168 \, {\left (2 \, B a b + A b^{2}\right )} \tan \left (d x + c\right )^{\frac {5}{2}} - 210 \, \sqrt {2} {\left ({\left (A + B\right )} a^{2} + 2 \, {\left (A - B\right )} a b - {\left (A + B\right )} b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - 210 \, \sqrt {2} {\left ({\left (A + B\right )} a^{2} + 2 \, {\left (A - B\right )} a b - {\left (A + B\right )} b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - 105 \, \sqrt {2} {\left ({\left (A - B\right )} a^{2} - 2 \, {\left (A + B\right )} a b - {\left (A - B\right )} b^{2}\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + 105 \, \sqrt {2} {\left ({\left (A - B\right )} a^{2} - 2 \, {\left (A + B\right )} a b - {\left (A - B\right )} b^{2}\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + 280 \, {\left (B a^{2} + 2 \, A a b - B b^{2}\right )} \tan \left (d x + c\right )^{\frac {3}{2}} + 840 \, {\left (A a^{2} - 2 \, B a b - A b^{2}\right )} \sqrt {\tan \left (d x + c\right )}}{420 \, d} \]

[In]

integrate(tan(d*x+c)^(3/2)*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/420*(120*B*b^2*tan(d*x + c)^(7/2) + 168*(2*B*a*b + A*b^2)*tan(d*x + c)^(5/2) - 210*sqrt(2)*((A + B)*a^2 + 2*
(A - B)*a*b - (A + B)*b^2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) - 210*sqrt(2)*((A + B)*a^2 + 2
*(A - B)*a*b - (A + B)*b^2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)))) - 105*sqrt(2)*((A - B)*a^2 -
 2*(A + B)*a*b - (A - B)*b^2)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + 105*sqrt(2)*((A - B)*a^2 -
2*(A + B)*a*b - (A - B)*b^2)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + 280*(B*a^2 + 2*A*a*b - B*b^
2)*tan(d*x + c)^(3/2) + 840*(A*a^2 - 2*B*a*b - A*b^2)*sqrt(tan(d*x + c)))/d

Giac [F(-1)]

Timed out. \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)^(3/2)*(a+b*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 21.13 (sec) , antiderivative size = 3869, normalized size of antiderivative = 10.75 \[ \int \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx=\text {Too large to display} \]

[In]

int(tan(c + d*x)^(3/2)*(A + B*tan(c + d*x))*(a + b*tan(c + d*x))^2,x)

[Out]

atan((B^2*a^4*tan(c + d*x)^(1/2)*((12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^
4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (B^2*a*b^3)/d^2 + (B^2*a^3*b)/d^2)^(1/2)*32i)/((16*B^3*b^6)/d - (16*B^3*a^6)/d
- (112*B^3*a^2*b^4)/d + (112*B^3*a^4*b^2)/d + (32*B*a*b*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B
^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3) + (B^2*b^4*tan(c + d*x)^(1/2)*((12*B^4*a^2*b^6*d^4 - B^4*b^8*
d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (B^2*a*b^3)/d^2 + (B^2*a^3*b)/d^2
)^(1/2)*32i)/((16*B^3*b^6)/d - (16*B^3*a^6)/d - (112*B^3*a^2*b^4)/d + (112*B^3*a^4*b^2)/d + (32*B*a*b*(12*B^4*
a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3) - (B^2*a^2*b^2*
tan(c + d*x)^(1/2)*((12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)
^(1/2)/(4*d^4) - (B^2*a*b^3)/d^2 + (B^2*a^3*b)/d^2)^(1/2)*192i)/((16*B^3*b^6)/d - (16*B^3*a^6)/d - (112*B^3*a^
2*b^4)/d + (112*B^3*a^4*b^2)/d + (32*B*a*b*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^
4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3))*((12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 1
2*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (B^2*a*b^3)/d^2 + (B^2*a^3*b)/d^2)^(1/2)*2i - atan((B^2*a^4*tan(c + d*x)^(1
/2)*((B^2*a^3*b)/d^2 - (B^2*a*b^3)/d^2 - (12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4
+ 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4))^(1/2)*32i)/((16*B^3*a^6)/d - (16*B^3*b^6)/d + (112*B^3*a^2*b^4)/d - (112*
B^3*a^4*b^2)/d + (32*B*a*b*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b
^2*d^4)^(1/2))/d^3) + (B^2*b^4*tan(c + d*x)^(1/2)*((B^2*a^3*b)/d^2 - (B^2*a*b^3)/d^2 - (12*B^4*a^2*b^6*d^4 - B
^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4))^(1/2)*32i)/((16*B^3*a^6)/d
- (16*B^3*b^6)/d + (112*B^3*a^2*b^4)/d - (112*B^3*a^4*b^2)/d + (32*B*a*b*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B
^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2))/d^3) - (B^2*a^2*b^2*tan(c + d*x)^(1/2)*((B^2*a^3*
b)/d^2 - (B^2*a*b^3)/d^2 - (12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b
^2*d^4)^(1/2)/(4*d^4))^(1/2)*192i)/((16*B^3*a^6)/d - (16*B^3*b^6)/d + (112*B^3*a^2*b^4)/d - (112*B^3*a^4*b^2)/
d + (32*B*a*b*(12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)
)/d^3))*((B^2*a^3*b)/d^2 - (B^2*a*b^3)/d^2 - (12*B^4*a^2*b^6*d^4 - B^4*b^8*d^4 - B^4*a^8*d^4 - 38*B^4*a^4*b^4*
d^4 + 12*B^4*a^6*b^2*d^4)^(1/2)/(4*d^4))^(1/2)*2i - atan((A^2*a^4*tan(c + d*x)^(1/2)*((A^2*a*b^3)/d^2 - (12*A^
4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (A^2*a^3*
b)/d^2)^(1/2)*32i)/((16*A*a^2*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^
6*b^2*d^4)^(1/2))/d^3 - (192*A^3*a^3*b^3)/d - (16*A*b^2*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A
^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2))/d^3 + (32*A^3*a*b^5)/d + (32*A^3*a^5*b)/d) + (A^2*b^4*tan(c + d*x)
^(1/2)*((A^2*a*b^3)/d^2 - (12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^
2*d^4)^(1/2)/(4*d^4) - (A^2*a^3*b)/d^2)^(1/2)*32i)/((16*A*a^2*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4
- 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2))/d^3 - (192*A^3*a^3*b^3)/d - (16*A*b^2*(12*A^4*a^2*b^6*d^4 -
A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2))/d^3 + (32*A^3*a*b^5)/d + (32*A^3*a
^5*b)/d) - (A^2*a^2*b^2*tan(c + d*x)^(1/2)*((A^2*a*b^3)/d^2 - (12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4
- 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (A^2*a^3*b)/d^2)^(1/2)*192i)/((16*A*a^2*(12*A^4*a^2
*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2))/d^3 - (192*A^3*a^3*b^3)
/d - (16*A*b^2*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2
))/d^3 + (32*A^3*a*b^5)/d + (32*A^3*a^5*b)/d))*((A^2*a*b^3)/d^2 - (12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*
d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4) - (A^2*a^3*b)/d^2)^(1/2)*2i - atan((A^2*a^4*tan(c
 + d*x)^(1/2)*((12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2
)/(4*d^4) + (A^2*a*b^3)/d^2 - (A^2*a^3*b)/d^2)^(1/2)*32i)/((16*A*b^2*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a
^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2))/d^3 - (16*A*a^2*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A
^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2))/d^3 - (192*A^3*a^3*b^3)/d + (32*A^3*a*b^5)/d + (3
2*A^3*a^5*b)/d) + (A^2*b^4*tan(c + d*x)^(1/2)*((12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^
4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4) + (A^2*a*b^3)/d^2 - (A^2*a^3*b)/d^2)^(1/2)*32i)/((16*A*b^2*(12*A^4*a
^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2))/d^3 - (16*A*a^2*(12*A
^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2))/d^3 - (192*A^3*a^
3*b^3)/d + (32*A^3*a*b^5)/d + (32*A^3*a^5*b)/d) - (A^2*a^2*b^2*tan(c + d*x)^(1/2)*((12*A^4*a^2*b^6*d^4 - A^4*b
^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4) + (A^2*a*b^3)/d^2 - (A^2*a^3*b)/
d^2)^(1/2)*192i)/((16*A*b^2*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*
b^2*d^4)^(1/2))/d^3 - (16*A*a^2*(12*A^4*a^2*b^6*d^4 - A^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*
a^6*b^2*d^4)^(1/2))/d^3 - (192*A^3*a^3*b^3)/d + (32*A^3*a*b^5)/d + (32*A^3*a^5*b)/d))*((12*A^4*a^2*b^6*d^4 - A
^4*b^8*d^4 - A^4*a^8*d^4 - 38*A^4*a^4*b^4*d^4 + 12*A^4*a^6*b^2*d^4)^(1/2)/(4*d^4) + (A^2*a*b^3)/d^2 - (A^2*a^3
*b)/d^2)^(1/2)*2i + tan(c + d*x)^(1/2)*((2*A*a^2)/d - (2*A*b^2)/d) + tan(c + d*x)^(3/2)*((2*B*a^2)/(3*d) - (2*
B*b^2)/(3*d)) + (2*A*b^2*tan(c + d*x)^(5/2))/(5*d) + (2*B*b^2*tan(c + d*x)^(7/2))/(7*d) + (4*A*a*b*tan(c + d*x
)^(3/2))/(3*d) - (4*B*a*b*tan(c + d*x)^(1/2))/d + (4*B*a*b*tan(c + d*x)^(5/2))/(5*d)